
An Implicit Feedback Model for Goodreads
Recommendations

Samantha Lee
skl384@nyu.edu

Center for Data Science, New York University

Abstract— Recommendation systems are one of the
most popular applications of machine learning technolo-
gies, and are commonly used to personalize suggestions
for users. In this project, I utilized the Spark engine
to build and evaluate a model based on the Goodreads
dataset and the ALS algorithm to recommend books to
users according to implicit feedback. To further extend
the model, I also visualized clusters of the books using
the fuzzy genres metadata and the t-SNE algorithm.

I. INTRODUCTION

A perfect example of the application of data,
recommendation systems provide easy, personal-
ized suggestions for customers, suited to their
tastes and needs. One particular strategy for rec-
ommendation systems is known as collaborative
filtering1. This method relies on past user behavior,
and identifies relationships between the user and
their interactions with certain products in order
to find associations. These associations can be
used for like-minded users with similar features to
discover unknown relationships between the users
and items.

In practical situations, recommendation systems
utilize implicit feedback to determine a user’s
preferences. This can include purchase or browsing
history, mouse movements, or search patterns. Al-
though it is not as clearly defined as explicit feed-
back, implicit feedback is more readily available
and accurately reflects the opinions of a specific
user.

To build the model, I utilized the alternating
least squares (ALS) algorithm, which is an iterative
technique that fits the rating matrix R as the prod-
uct of user-item embedding matrices - in our case
the user-book matrices U and V . After initializing
each set, at each iteration, one matrix is fixed and
the other is solved using least-squares:

(R∗, V ∗) = argmin(R,V)‖R−UTV ‖2+λ(‖U‖2+‖V ‖2)
(1)

The updated factor matrix is then held constant
to optimize the former matrix. This process is
repeated until convergence.

The hyperparameters are the rank of U and
V , the regularization parameter λ, and a constant
alpha. These are used to tune the model in Section
2.

II. IMPLEMENTATION

A. Dataset
Each row of the dataset represents an interaction

and contains the user id, book id, rating, booleans
for whether or not the book has been reviewed or
read. There are 876K total users and 223M user-
book interactions.

B. Preprocessing
Due to the limited computing resources, there

was significant preprocessing done to efficiently
run the model. Any books that have not been read
or were not reviewed were removed from the total
dataset, and any user who read less than 10 books
was removed. I also excluded ratings with a value
of 0, since it corresponded with having no review.
Then the data was downsampled to include only
25% of the total interactions, and the users split
into 60% training, 20% validation and 20% testing.
I made sure to include all users that ended up in
the validation and testing sets in the training set as
well, by taking half of those users’ interactions and
adding them into the training data. This guarantees
that we do not have unseen users in the validation
and test sets. See Figure 1 for an overview of the
records in each dataset, respectively.

Dataset Interactions Users

Train 2, 916,694 177,866

Validation 379,967 36,257

Test 369,833 35,782

Fig. 1. Dataset Overview

C. Modeling

From Spark’s machine learning library MLlib,
the ALS method was used to estimate the user-
item matrices. After fitting the model, the recom-
mendForUserSubset method was used to return the
top 500 predicted items for each user. Another
DataFrame was also produced consisting of the
actual rank of items for each user, ordered by
the count. These two DataFrames were joined and
converted to a resilient distributed dataset (RDD),
which became the input of the RankingMetrics
method. This produced the values for the three
metrics that evaluated the recommendations, so the
best fit can be chosen for the test set.

D. Hyperparameter Tuning

There are different hyperparameters that were
tuned on the validation set to create optimal per-
formance: rank, regParam, and alpha. For the ALS
model specifically, rank represents the number of
latent factors, or features in the lower dimen-
sion that have been projected from the user-item
matrix2. The regParam specifies the regularization
parameter, used to avoid overfitting. Alpha is ap-
plied to the implicit feedback variant of ALS; it
governs the baseline confidence in preference3.

They are assessed using mean average precision,
precision at k, and normalized discounted cumula-
tive gain as shown in Section 3.

III. EVALUATION

First, we define M 4 as the number of users
U = [u0, u1, ...uM−1]. Each user (ui) has a set
of N ground-truth relevant documents Di =
[d0, d1, ...dN−1] and a list of Q ordered recom-
mended documents based on the relevance Ri =
[r0, r1, ...rQ−1]. The metrics used to evaluate here
compare the true relevant items with the recom-
mended items to determine the effectiveness of the
model.

A. Metrics

Mean Average Precision (MAP)
This is a measure of how many of the pre-

dicted items will appear in the true relevant item
set. Since MAP accounts for the order of the
recommender, the nuances here are that it will
impose a penalty for relevant items that were not
recommended with high relevance by the model.
For M users and Q top recommended items, MAP
is calculated by:

MAP =
1

M

M∑
i=1

1

| Di |

Q∑
j=1

relDi
(rj)

j
(2)

where relD(ri) =
{
1, r ∈ D
0, otherwise

(3)

Precision at k
To account for the penalization of MAP, preci-

sion is also used to evaluate the model. This is a
measure of how many of the predicted items are
relevant and appear in the item set, regardless of
the ordering of both the predictions and the item
set. For M users, precision is defined by:

p(k) =
1

M

M−1∑
i=0

1

k

min(|D|,k)−1∑
j=0

relDi
(Ri(j)) (4)

Normalized Discounted Cumulative Gain
(NDCG)

NDCG is computes how relevant the recom-
mendations are, when normalized between users.
We consider the cumulative gain, which sums
up the ratings up to a specific rank position k:
CGk =

∑k
i=1 reli We then consider the discount

D by dividing the cumulative gain by the rank k:
DCGk =

∑k
i=1

reli
log2(i+1)

To normalize, we divide
the DCG by the ideal DCG, which is the dis-
counted cumulative gain of the best possible results
based on the ratings: IDCGk =

∑|RELk|
i=1

2reli−1
log2(i+1)

The final calculation for NDCG is:

NDCGk =
DCGk

IDCGk

(5)

Fig. 2. Evaluation Metrics

MAP Precision at 500 NDCG at 500

0.01262 0.003846 0.075214

Fig. 3. Evaluation on Test Set

B. Final Results
I performed grid search over the following hy-

perparameters to achieve the ideal combination to
train on the final model. See Figure 2 for the
evaluations based on each setting.
• regParam: [0.05, 0.1]
• rank: [5, 10, 20, 30]
• alpha: [1, 15]
The best model on the validation set, based on

precision at k and NDCG, is achieved with rank
= 30, regParam = 0.05, and alpha = 15. We see
a MAP of 0.012786, precision score of 0.003809,
and ndcg of 0.075277 in the holdout set with these
hyperparameters. Note that the best MAP is found
with rank = 10, regParam = 0.05, and alpha = 15,
but it was not used since the other metrics had
matching best hyperparameters.

After evaluating our model on the test set, we
see the results shown in Figure 3.

The scores are similar to that of our holdout set,
which indicates that the model does not overfit the
training data. With more time and computing re-
sources, I could improve the evaluation metrics by
tuning on more combinations of hyperparameters
and include a larger sample of data while training.

IV. EXTENSION

To extend the baseline model, I developed a set
of visualizations using t-SNE; the goal was to de-
pict clusters of the users and books using the fuzzy
genres5 metadata. Taking the best model with the
rank of 30, I applied the t-SNE algorithm to map

Fig. 4. Learned item factors colored by genre

the data into two dimensions, and color based on
the genres from the metadata. The genres metadata
includes multiple possibilities that each book could
be categorized as, based on tags extracted and
matched from users’ popular shelves, so I assumed
that the highest value of genre for a certain book
equated the most matches and considered that the
specific genre for each book.

t-Distributed Stochastic Neighbor Embedding (t-
SNE) is a non-linear dimensionality reduction al-
gorithm used for exploring high-dimensional data6.
It find patterns by identifying observed clusters
based on the similarity of data points within multi-
ple features; however the input features no longer
become identifiable as the multi-dimensional data
is mapped into a lower dimensional space. The
algorithm can be tuned using perplexity, which is
a guess about the number of close neighbors each
point has7, and can balance the attention between
local and global aspects of the data. The main use
case for t-SNE is for exploratory data analysis and
as an input parameter for further classification and
clustering tasks.

Figure 4 is a plot of the low-dimensional repre-
sentation of the item latent factors, colored by the
genres in the metadata, as well an extra category
if no specific genre was found. There is no visible
clustering in the genres at each perplexity value.
This could be due to the fact that the item latent
factors are both positive and negative in the model,
which consequently cancel each other out and
make it difficult for t-SNE to make sense of.

In Figure 5 and 6, I further explored the hy-
pothesis above by including only non-negative
latent item factors, and only negative latent item
factors respectively. We can see the embeddings
contribute to the representation individually and
tend to cluster to opposite portions of the plot

Fig. 5. Learned non-negative item factors colored by genre

Fig. 6. Learned negative item factors colored by genre

Fig. 7. Learned user factors colored by genre

depending on the scale. Although there are still
no definitive clusters that can be identified, there
is a visible impact of the latent factors’ magnitude
on the plots.

Figure 7 is a plot of the low-dimensional repre-
sentation of the user-latent factors, colored by the
10 genres and if there was not one genre found. We
see more sparsity as the perplexity increases, but
there is still no identifiable clustering, most likely
due to the positive and negative user latent factors.
I posit the visualizations will have more scale and
patterns will be able to be identified if there were
only non-negative or only negative latent factors.

V. DISCUSSION

The final ALS model is fit with hyperparameters
rank = 30, regParam = 0.05, and alpha = 15. The
achieved evaluation metrics are MAP = 0.01262,

precision at 500 = 0.003846, and NDCG at 500
= 0.075214. This was done post downsampling,
preprocessing and hyperparameter tuning. In the
extension, the t-SNE algorithm is applied to at-
tempt to identify clusters of the item and user latent
factors based on the genre.

The limitations of building this recommendation
system were due mostly to the constraints of
running jobs on the HPC Cluster. If possible, I
would have liked to include a higher percentage
of the total data in the model, and conduct a more
thorough hyperparameter grid search to achieve
better results. I would have also liked to further
explore the visualizations with t-SNE, and experi-
ment with the latent factors and metadata to deliver
some clustering in the plots.

REFERENCES

[1] Y. F. Hu, Y. Koren, C. Volinsky, Collaborative Filtering for
Implicit Feedback Datasets, IEEE International Conference on
Data Mining (ICDM 2008), IEEE, 2008.

[2] Sammut C., Webb G.I. Latent Factor Models and Matrix
Factorizations. Encyclopedia of Machine Learning. Springer,
Boston, MA, 2011.

[3] Collaborative Filtering - Spark 2.4.5 Documentation.
Spark.apache.org. https://spark.apache.org/docs/latest/ml-
collaborative-filtering.html

[4] Evaluation Metrics - RDD-based API -
Spark 2.4.5 Documentation. Spark.apache.org.
https://spark.apache.org/docs/latest/mllib-evaluation-
metrics.html

[5] Mengting Wan, Julian McAuley, ”Item Recommendation on
Monotonic Behavior Chains”, in RecSys’18.

[6] Saurabh Jaju, Comprehensive Guide on t-SNE
algorithm with implementation in R Python. 2017.
https://www.analyticsvidhya.com/blog/2017/01/t-sne-
implementation-r-python/

[7] Wattenberg, et al., ”How to Use t-SNE Effectively”, Distill,
2016. http://doi.org/10.23915/distill.00002

